首页> 外文OA文献 >A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: Benchmarking efficiency and quality
【2h】

A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: Benchmarking efficiency and quality

机译:内容不匹配且变形较大的多目标可变形图像配准的基于模型的新型进化算法:对标效率和质量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

textabstractTaking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of ∼1600 on the tested registration problems while achieving registration outcomes of similar quality.
机译:针对变形图像配准的多目标优化方法最近受到关注,因为这种方法消除了手动调整所有涉及目标的权重的要求。特别是对于需要大的复杂变形的问题,这是一项艰巨的任务。然后,可以从产生的Pareto解决方案集中更深入地选择最适合当前问题的注册结果。要用作内部优化引擎,当前使用的多目标算法是有效的,但是效率很低。在本文中,我们通过引入最近引入的用于离散优化的基因池最优混合进化算法(GOMEA)的多目标实值自适应,在很大程度上改善了这一点。在这项工作中,GOMEA专门针对可变形图像配准的问题进行了定制,以显着提高效率。通过利用GOMEA的一项关键优势,可以实现这一改进:迭代地改进解决方案的一小部分,从而允许通过部分评估更快地利用此类更新对目标的影响。我们针对三个注册问题进行了实验。特别是,考虑了一个人工问题,该问题包括消失的结构,一对术前和术后乳房CT扫描以及一对俯卧和仰卧位获得的乳房MRI扫描。结果表明,与以前使用的进化算法相比,GOMEA在测试的配准问题上可获得高达1600倍的加速,同时获得了类似质量的配准结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号